Python
  • Introduction
  • Chapter 1.Notes from research
    • 1.Introduction of Python
    • 2. Build developer environment
      • 2.1.Sublime Text3
      • 2.2.Jupyter(IPython notebook)
        • 2.2.1.Introduction
        • 2.2.2.Basic usage
        • 2.2.3.some common operations
      • 2.3.Github
        • 2.3.1.Create Github account
        • 2.3.2.Create a new repository
        • 2.3.3.Basic operations: config, clone, push
      • 2.4.Install Python 3.4 in Windows
    • 3. Write Python code
      • 3.1.Hello Python
      • 3.2.Basic knowledges
      • 3.3.撰寫獨立python程式
      • 3.4.Arguments parser
      • 3.5.Class
      • 3.6.Sequence
    • 4. Web crawler
      • 4.1.Introduction
      • 4.2.requests
      • 4.3.beautifulSoup4
      • 3.4.a little web crawler
    • 5. Software testing
      • 5.1. Robot Framework
        • 1.1.Introduction
        • 1.2.What is test-automation framework?
        • 1.3.Robot Framework Architecture
        • 1.4.Robot Framework Library
        • 1.5.Reference
    • 6. encode/ decode
      • 6.1.編碼/解碼器的基本概念
      • 6.2.常見的編碼/ 解碼錯誤訊息與其意義
      • 6.3 .處理文字檔案
    • 7. module
      • 7.1.Write a module
      • 7.2.Common module
        • 7.2.1.sched
        • 7.2.2.threading
    • 8. Integrate IIS with django
      • 8.1.Integrate IIS with django
  • Chapter 2.Courses
    • 2.1.Python for Data Science and Machine Learning Bootcamp
      • 2.1.1.Virtual Environment
      • 2.1.2.Python crash course
      • 2.1.3.Python for Data Analysis - NumPy
        • 2.1.3.1.Numpy arrays
        • 2.1.3.2.Numpy Array Indexing
        • 2.1.3.3.Numpy Operations
      • 2.1.4.Python for Data Analysis - Pandas
        • 2.1.4.1.Introduction
        • 2.1.4.2.Series
        • 2.1.4.3.DataFrames
        • 2.1.4.4.Missing Data
        • 2.1.4.5.GroupBy
        • 2.1.4.6.Merging joining and Concatenating
        • 2.1.4.7.Data input and output
      • 2.1.5.Python for Data Visual Visualization - Pandas Built-in Data Visualization
      • 2.1.6.Python for Data Visualization - Matplotlib
        • 2.1.6.1.Introduction of Matplotlib
        • 2.1.6.2.Matplotlib
      • 2.1.7.Python for Data Visualization - Seaborn
        • 2.1.7.1.Introduction to Seaborn
        • 2.1.7.2.Distribution Plots
        • 2.1.7.3.Categorical Plots
        • 2.1.7.4.Matrix Plots
        • 2.1.7.5.Grids
        • 2.1.7.6.Regression Plots
      • 2.1.8. Python for Data Visualization - Plotly and Cufflinks
        • 2.1.8.1.Introduction to Plotly and Cufflinks
        • 2.1.8.2.Plotly and Cufflinks
      • 2.1.9. Python for Data Visualization - Geographical plotting
        • 2.1.9.1.Choropleth Maps - USA
        • 2.1.9.2.Choropleth Maps - World
      • 2.1.10.Combine data analysis and visualization to tackle real world data sets
        • 911 calls capstone project
      • 2.1.11.Linear regression
        • 2.1.11.1.Introduction to Scikit-learn
        • 2.1.11.2.Linear regression with Python
      • 2.1.12.Logistic regression
        • 2.1.12.1.Logistic regression Theory
        • 2.1.12.2.Logistic regression with Python
      • 2.1.13.K Nearest Neighbors
        • 2.1.13.1.KNN Theory
        • 2.1.13.2.KNN with Python
      • 2.1.14.Decision trees and random forests
        • 2.1.14.1.Introduction of tree methods
        • 2.1.14.2.Decision trees and Random Forests with Python
      • 2.1.15.Support Vector Machines
      • 2.1.16.K means clustering
      • 2.1.17.Principal Component Analysis
    • 2.2. Machine Learning Crash Course Jam
Powered by GitBook
On this page

Was this helpful?

  1. Chapter 1.Notes from research
  2. 2. Build developer environment

2.1.Sublime Text3

Previous2. Build developer environmentNext2.2.Jupyter(IPython notebook)

Last updated 5 years ago

Was this helpful?

  • 0.Prerequisite

    • 1.Install sublime Text 3:

  • 1.Introduction

    • Anaconda是一個plugin, 可幫助我們在開發Python時有較高的生產力, 並且可以幫助開發時的style及正確性

    • 主要功能:

      • 1.語法檢測(Lint)

        • PEP 8

          • PEP 8 是Python的代碼風格指南(Style Guide for Python Code),其中很多内容都来自Guido van Rossum。PEP 8 从代碼格式、注釋、空白、變量名、參考及權利聲明等方面出發。

        • 當語法或格式出現問題時, 最左方會出現白點

        • 畫面 -> 右鍵選擇Anaconda -> Show error list

          • 舉例來說, 當import一個lib但沒使用時, 即會出現警告

      • 2.閱讀Pydoc的文件

        • 可以閱讀Pydoc的文件以及自己function或是class method定義的doc的文件解釋

        • Pydoc

          • pydoc是Python自帶的module,主要用於從python module中自動生成文檔,也可以從瀏覽器中看這些文檔

          • 用法

            • 1.Help

                    python -m pydoc -h
            • 2.在命令列中查看該module的用法

                    python -m pydoc <module>
            • 3.從瀏覽器打開pydoc

                    python -m pydoc -p 1234
      • 3.Go to definition

      • 4.自動提示與補齊功能(Auto Complete)

        • 推測後續可能的文字並顯示出來

  • 2.安裝

    • 1.Preference -> Package Control -> Package Control: Install package

    • 2.在搜尋欄輸入Anaconda

  • 3.設定

    • 1.修改Preference -> Package Settings -> Anaconda -> Settings Default的內容

      • 1.修改python_interpreter

      • 2.修改complete_all_parameters, complete_parameters

    • 2.將Preference -> Package Settings -> Anaconda -> Settings Default的內容複製到Preference -> Package Settings -> Anaconda -> Settings User

    • 3.重開sublime

https://jenhsuan.gitbooks.io/web-front-end/content/chapter1/11install-sublime-text3-and-packages.html
https://www.gitbook.com/book/jenhsuan/web-front-end/edit#/edit/master/chapter1/12sublime-plugin/121package-install-control.md?_k=7v5tq7
http://sighingnow.github.io/%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80/pep_8.html