Python
  • Introduction
  • Chapter 1.Notes from research
    • 1.Introduction of Python
    • 2. Build developer environment
      • 2.1.Sublime Text3
      • 2.2.Jupyter(IPython notebook)
        • 2.2.1.Introduction
        • 2.2.2.Basic usage
        • 2.2.3.some common operations
      • 2.3.Github
        • 2.3.1.Create Github account
        • 2.3.2.Create a new repository
        • 2.3.3.Basic operations: config, clone, push
      • 2.4.Install Python 3.4 in Windows
    • 3. Write Python code
      • 3.1.Hello Python
      • 3.2.Basic knowledges
      • 3.3.撰寫獨立python程式
      • 3.4.Arguments parser
      • 3.5.Class
      • 3.6.Sequence
    • 4. Web crawler
      • 4.1.Introduction
      • 4.2.requests
      • 4.3.beautifulSoup4
      • 3.4.a little web crawler
    • 5. Software testing
      • 5.1. Robot Framework
        • 1.1.Introduction
        • 1.2.What is test-automation framework?
        • 1.3.Robot Framework Architecture
        • 1.4.Robot Framework Library
        • 1.5.Reference
    • 6. encode/ decode
      • 6.1.編碼/解碼器的基本概念
      • 6.2.常見的編碼/ 解碼錯誤訊息與其意義
      • 6.3 .處理文字檔案
    • 7. module
      • 7.1.Write a module
      • 7.2.Common module
        • 7.2.1.sched
        • 7.2.2.threading
    • 8. Integrate IIS with django
      • 8.1.Integrate IIS with django
  • Chapter 2.Courses
    • 2.1.Python for Data Science and Machine Learning Bootcamp
      • 2.1.1.Virtual Environment
      • 2.1.2.Python crash course
      • 2.1.3.Python for Data Analysis - NumPy
        • 2.1.3.1.Numpy arrays
        • 2.1.3.2.Numpy Array Indexing
        • 2.1.3.3.Numpy Operations
      • 2.1.4.Python for Data Analysis - Pandas
        • 2.1.4.1.Introduction
        • 2.1.4.2.Series
        • 2.1.4.3.DataFrames
        • 2.1.4.4.Missing Data
        • 2.1.4.5.GroupBy
        • 2.1.4.6.Merging joining and Concatenating
        • 2.1.4.7.Data input and output
      • 2.1.5.Python for Data Visual Visualization - Pandas Built-in Data Visualization
      • 2.1.6.Python for Data Visualization - Matplotlib
        • 2.1.6.1.Introduction of Matplotlib
        • 2.1.6.2.Matplotlib
      • 2.1.7.Python for Data Visualization - Seaborn
        • 2.1.7.1.Introduction to Seaborn
        • 2.1.7.2.Distribution Plots
        • 2.1.7.3.Categorical Plots
        • 2.1.7.4.Matrix Plots
        • 2.1.7.5.Grids
        • 2.1.7.6.Regression Plots
      • 2.1.8. Python for Data Visualization - Plotly and Cufflinks
        • 2.1.8.1.Introduction to Plotly and Cufflinks
        • 2.1.8.2.Plotly and Cufflinks
      • 2.1.9. Python for Data Visualization - Geographical plotting
        • 2.1.9.1.Choropleth Maps - USA
        • 2.1.9.2.Choropleth Maps - World
      • 2.1.10.Combine data analysis and visualization to tackle real world data sets
        • 911 calls capstone project
      • 2.1.11.Linear regression
        • 2.1.11.1.Introduction to Scikit-learn
        • 2.1.11.2.Linear regression with Python
      • 2.1.12.Logistic regression
        • 2.1.12.1.Logistic regression Theory
        • 2.1.12.2.Logistic regression with Python
      • 2.1.13.K Nearest Neighbors
        • 2.1.13.1.KNN Theory
        • 2.1.13.2.KNN with Python
      • 2.1.14.Decision trees and random forests
        • 2.1.14.1.Introduction of tree methods
        • 2.1.14.2.Decision trees and Random Forests with Python
      • 2.1.15.Support Vector Machines
      • 2.1.16.K means clustering
      • 2.1.17.Principal Component Analysis
    • 2.2. Machine Learning Crash Course Jam
Powered by GitBook
On this page
  • 0. Regression Plots的繪圖種類
  • 1. 使用library
  • 2.lmplot

Was this helpful?

  1. Chapter 2.Courses
  2. 2.1.Python for Data Science and Machine Learning Bootcamp
  3. 2.1.7.Python for Data Visualization - Seaborn

2.1.7.6.Regression Plots

Previous2.1.7.5.GridsNext2.1.8. Python for Data Visualization - Plotly and Cufflinks

Last updated 5 years ago

Was this helpful?

0. Regression Plots的繪圖種類

  • sns.lmplot

1. 使用library

import seaborn as sns
  • 將圖表直接嵌入到Notebook之中

%matplotlib inline
  • 讀入資料

tips = sns.load_dataset('tips')
tips.head()

2.lmplot

  • lmplot是一種集合基礎繪圖與基於數據建立回歸模型的繪圖方法, 旨在建立一個方便擬合數據集回歸模型的繪圖方法

  • 可以利用參數來調整擬合的模型類型: order、logistic、lowess、robust、logx

  • 基於建立回歸模型的繪圖方法

sns.lmplot(x='total_bill', y='tip', data=tips)
  • 分類

sns.lmplot(x='total_bill', y='tip', data=tips, hue='sex', markers=['o', 'v'], scatter_kws={'s':100})
  • 繪製多張圖

    • col參數

      sns.lmplot(x='total_bill', y='tip',  data=tips, col='sex', row='time')
  • 應用例 1. 建立int.rate, fico的線性回歸模型

      plt.figure(figsize=(11,7))
      sns.lmplot(y='int.rate',x='fico',data=df)
      plt.figure(figsize=(11,7))    
      sns.lmplot(y='int.rate',x='fico',data=df,hue='credit.policy',palette='Set1')
      plt.figure(figsize=(11,7))
      sns.lmplot(y='int.rate',x='fico',data=df,hue='credit.policy',col='not.fully.paid',palette='Set1)

2. 加入credit.policy的比較

3. 加入not.fully.paid的比較