Python
  • Introduction
  • Chapter 1.Notes from research
    • 1.Introduction of Python
    • 2. Build developer environment
      • 2.1.Sublime Text3
      • 2.2.Jupyter(IPython notebook)
        • 2.2.1.Introduction
        • 2.2.2.Basic usage
        • 2.2.3.some common operations
      • 2.3.Github
        • 2.3.1.Create Github account
        • 2.3.2.Create a new repository
        • 2.3.3.Basic operations: config, clone, push
      • 2.4.Install Python 3.4 in Windows
    • 3. Write Python code
      • 3.1.Hello Python
      • 3.2.Basic knowledges
      • 3.3.撰寫獨立python程式
      • 3.4.Arguments parser
      • 3.5.Class
      • 3.6.Sequence
    • 4. Web crawler
      • 4.1.Introduction
      • 4.2.requests
      • 4.3.beautifulSoup4
      • 3.4.a little web crawler
    • 5. Software testing
      • 5.1. Robot Framework
        • 1.1.Introduction
        • 1.2.What is test-automation framework?
        • 1.3.Robot Framework Architecture
        • 1.4.Robot Framework Library
        • 1.5.Reference
    • 6. encode/ decode
      • 6.1.編碼/解碼器的基本概念
      • 6.2.常見的編碼/ 解碼錯誤訊息與其意義
      • 6.3 .處理文字檔案
    • 7. module
      • 7.1.Write a module
      • 7.2.Common module
        • 7.2.1.sched
        • 7.2.2.threading
    • 8. Integrate IIS with django
      • 8.1.Integrate IIS with django
  • Chapter 2.Courses
    • 2.1.Python for Data Science and Machine Learning Bootcamp
      • 2.1.1.Virtual Environment
      • 2.1.2.Python crash course
      • 2.1.3.Python for Data Analysis - NumPy
        • 2.1.3.1.Numpy arrays
        • 2.1.3.2.Numpy Array Indexing
        • 2.1.3.3.Numpy Operations
      • 2.1.4.Python for Data Analysis - Pandas
        • 2.1.4.1.Introduction
        • 2.1.4.2.Series
        • 2.1.4.3.DataFrames
        • 2.1.4.4.Missing Data
        • 2.1.4.5.GroupBy
        • 2.1.4.6.Merging joining and Concatenating
        • 2.1.4.7.Data input and output
      • 2.1.5.Python for Data Visual Visualization - Pandas Built-in Data Visualization
      • 2.1.6.Python for Data Visualization - Matplotlib
        • 2.1.6.1.Introduction of Matplotlib
        • 2.1.6.2.Matplotlib
      • 2.1.7.Python for Data Visualization - Seaborn
        • 2.1.7.1.Introduction to Seaborn
        • 2.1.7.2.Distribution Plots
        • 2.1.7.3.Categorical Plots
        • 2.1.7.4.Matrix Plots
        • 2.1.7.5.Grids
        • 2.1.7.6.Regression Plots
      • 2.1.8. Python for Data Visualization - Plotly and Cufflinks
        • 2.1.8.1.Introduction to Plotly and Cufflinks
        • 2.1.8.2.Plotly and Cufflinks
      • 2.1.9. Python for Data Visualization - Geographical plotting
        • 2.1.9.1.Choropleth Maps - USA
        • 2.1.9.2.Choropleth Maps - World
      • 2.1.10.Combine data analysis and visualization to tackle real world data sets
        • 911 calls capstone project
      • 2.1.11.Linear regression
        • 2.1.11.1.Introduction to Scikit-learn
        • 2.1.11.2.Linear regression with Python
      • 2.1.12.Logistic regression
        • 2.1.12.1.Logistic regression Theory
        • 2.1.12.2.Logistic regression with Python
      • 2.1.13.K Nearest Neighbors
        • 2.1.13.1.KNN Theory
        • 2.1.13.2.KNN with Python
      • 2.1.14.Decision trees and random forests
        • 2.1.14.1.Introduction of tree methods
        • 2.1.14.2.Decision trees and Random Forests with Python
      • 2.1.15.Support Vector Machines
      • 2.1.16.K means clustering
      • 2.1.17.Principal Component Analysis
    • 2.2. Machine Learning Crash Course Jam
Powered by GitBook
On this page
  • 1.使用library
  • 2.基本概念
  • 3.Numpy的基本操作

Was this helpful?

  1. Chapter 2.Courses
  2. 2.1.Python for Data Science and Machine Learning Bootcamp
  3. 2.1.3.Python for Data Analysis - NumPy

2.1.3.3.Numpy Operations

1.使用library

import numpy as np

2.基本概念

arr = np.arange(0, 11)
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])
  • 相同維度陣列的每個元素都可以加減乘除

    • 除的時候要注意分母不可以為零

      arr + arr
      arr - arr
      arr * arr
      arr / arr
    • 將陣列中的每個元素次方

      arr ** 2
  • 將陣列中的每個元素次方根

    np.sqrt(arr)
  • 將陣列中的每個元素取指數, 對數

    np.exp(arr)
    np.log(arr)
  • 將陣列中的每個元素取sin

    np.sin(arr)

3.Numpy的基本操作

  • 1.重新指定陣列的維度

    • e.g., 將一維陣列重新分配成5 * 5的陣列

      arr = np.arrange(25)
      #重新分配成5 * 5的陣列
      arr.reshape(5, 5)
  • 2.最大值

ranarr = np.random.randint(1, 100, 10)
# 等意於np.max(ranarr)
ranarr.max()
  • 3.最小值

ranarr = np.random.randint(1, 100, 10)
ranarr.min()
  • 4.最大值的索引值

ranarr = np.random.randint(1, 100, 10)
ranarr.argmax()
  • 5.陣列維度

arr.shape
  • 6.條件選擇

arr = np.arange(0, 11)
#留下 > 5的值, 將會得到boolean的陣列
bool_arr = arr > 5
#等意於arr[arr>5]
arr[boo_arr]
  • 7.總和

    • 一維陣列

      arr.sum()
    • 二維陣列

      • 計算每個column的總和

        arr.sum(axis=0)
Previous2.1.3.2.Numpy Array IndexingNext2.1.4.Python for Data Analysis - Pandas

Last updated 5 years ago

Was this helpful?