2.1.9.1.Choropleth Maps - USA
1. 使用library
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
init_notebook_mode(connected = True)
2.基本操作
Choropleth Map的兩個要素:
Data
指定locationmode = 'USA-states'
data = dict(type = 'choropleth', locations = ['AZ', 'CA', 'NY'], locationmode = 'USA-states', colorscale = 'Portland', text = ['Arizona', 'Cali', 'New York'], z = [1.0 , 2.0, 3.0], colorbar = {'title': 'colorbar title goes here'})
Layout
在geo中指定'scope': 'usa'
layout = dict(geo={'scope': 'usa'})
製作Choropleth Map
choromap = go.Figure(data = [data], layout = layout)
iplot(choromap)

3.從實際資料中繪製Choropleth Map
讀取資料
可在資料中放入想要顯示的country code, z值 (數量), label
import pandas as pd df = pd.read_csv('2011_US_AGRI_Exports') df.head()
Choropleth Map的兩個要素 Data, Layout
data = dict(type = 'choropleth',
colorscale = 'YIOrRd',
locations = df['code'],
locationmode = 'USA-states',
z = df['total exports'],
text = df['text'],
marker = dict(line = dict(color = 'rgb(255, 255, 255)', width = 2)),
colorbar = {'title': 'Millions USD'})
layout = dict(title = '2011 US Agiculture Exports bt states',
geo = dict(scope = 'usa', showlakes = True, lakecolor = 'rgb(85, 173, 240)'))
製作Choropleth Map
choromap2 = go.Figure(data = [data], layout = layout)
iplot(choromap2)

Previous2.1.9. Python for Data Visualization - Geographical plottingNext2.1.9.2.Choropleth Maps - World
Last updated
Was this helpful?